REVIEW
Introdução: A estimulação cerebral profunda (DBS) é uma técnica de neuromodulação que utiliza eletrodos implantados para regular redes neurais. Apesar de suas aplicações terapêuticas em distúrbios neurológicos e psiquiátricos, seu impacto na hemodinâmica e no metabolismo ainda é pouco compreendido. Neuroimagens, como PET e SPECT, ilustram esses efeitos, mas os estudos variam em demografia de pacientes, métodos de análise e tamanhos de amostra. Objetivo: Este estudo tem como objetivo realizar uma revisão narrativa da pesquisa sobre os efeitos metabólicos e hemodinâmicos da DBS. Métodos: Realizamos uma pesquisa no PubMed para estudos clínicos que vinculam DBS, fluxo sanguíneo cerebral e metabolismo cerebral. Nossa revisão incluiu 29 artigos, extraindo dados sobre condições dos pacientes, alvos da DBS, parâmetros, detalhes de imagem e resultados da estimulação. Resultados: A DBS afeta principalmente os locais estimulados, aumentando a captação de ligantes e se estendendo a regiões cerebrais vizinhas. Os efeitos locais variam de acordo com o núcleo estimulado, mas a maioria dos estudos mostra efeitos remotos, sugerindo que as mudanças induzidas pela estimulação se propagam por sistemas neurais conectados. As alterações específicas dependem da região cerebral estimulada e da tarefa, seja em repouso ou durante o movimento. Locais de estimulação semelhantes tendem a produzir resultados comparáveis em
Introduction: Deep brain stimulation (DBS) is a neuromodulation technique using implanted electrodes to regulate neural networks. Despite its therapeutic applications in neurological and psychiatric disorders, its impact on hemodynamics and metabolism remains poorly understood. Neuroimaging like PET and SPECT illustrate these effects, but studies vary in patient demographics, analysis methods, and sample sizes. Objective: This study aims to conduct a narrative review of the research on metabolic and hemodynamic effects of DBS. Methods: We conducted a PubMed research for clinical studies linking DBS, cerebral blood flow, and brain metabolism. Our review included 29 articles, extracting data on patient conditions, DBS targets, parameters, imaging details, and stimulation outcomes. Results: DBS primarily affects stimulated sites, increasing ligand uptake and extending to neighboring brain regions. Local effects vary by the stimulated nucleus, but most studies show remote effects, suggesting that stimulation-induced changes propagate through connected neural systems. The specific alterations depend on the stimulated brain region and the task, whether at rest or during movement. Similar stimulation sites tend to yield comparable outcomes across diseases. Conclusion: Our review highlights DBS therapeutic effects on hemodynamics and metabolism at stimulation sites and in connected neural systems. Nonetheless, more research with consistent data collection is needed to fully understand DBS effects across diseases and neural networks.
1. Conen S, Matthews JC, Patel NK, Anton-Rodriguez J, Talbot PS. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression. J Psychopharmacol. 2018;32(4):430-40. http:// dx.doi.org/10.1177/0269881117742668. PMid:29228889.
2. Crowell JL, Shah BB. Surgery for dystonia and tremor. Curr Neurol Neurosci Rep. 2016;16(3):22. http://dx.doi.org/10.1007/s11910-016- 0627-8. PMid:26838349.
3. Martín-Blanco A, Serra-Blasco M, Pérez-Egea R, et al. Immediate cerebral metabolic changes induced by discontinuation of deep brain stimulation of subcallosal cingulate gyrus in treatment-resistant depression. J Affect Disord. 2015;173:159-62. http://dx.doi.org/10.1016/j. jad.2014.10.035. PMid:25462411.
4. Limousin P, Greene JN, Pollak P, Rothwell JC, Benabid AL, Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson disease. Ann Neurol. 1997;42(3):283-91. http://dx.doi.org/10.1002/ana.410420303. PMid:9307248.
5. Perlmutter JS, Mink JW, Bastian AJ, et al. Blood flow responses to deep brain stimulation of thalamus. Neurology. 2002;58(9):1388-94. http://dx.doi.org/10.1212/WNL.58.9.1388. PMid:12011286.
6. Dougherty DD, Chou T, Corse AK, et al. Acute deep brain stimulation changes in regional cerebral blood flow in obsessive-compulsive disorder. J Neurosurg. 2016;125(5):1087-93. http://dx.doi. org/10.3171/2015.9.JNS151387. PMid:26894459.
7. Katsakiori PF, Kefalopoulou Z, Markaki E, et al. Deep brain stimulation for secondary dystonia: results in 8 patients. Acta Neurochir. 2009;151(5):473-8. http://dx.doi.org/10.1007/s00701-009-0281-x. PMid:19322514.
8. Kokkonen A, Honkanen EA, Corp DT, Joutsa J. Neurobiological effects of deep brain stimulation: a systematic review of molecular brain imaging studies. Neuroimage. 2022;260:119473. http://dx.doi. org/10.1016/j.neuroimage.2022.119473. PMid:35842094.
9. Brown EC, Clark DL, Forkert ND, Molnar CP, Kiss ZHT, Ramasubbu R. Metabolic activity in subcallosal cingulate predicts response to deep brain stimulation for depression. Neuropsychopharmacology. 2020;45(10):1681-8. http://dx.doi.org/10.1038/s41386-020-0745-5. PMid:32580207.
10. Karimi M, Golchin N, Tabbal SD, et al. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain. 2008;131(10):2710-9. http://dx.doi.org/10.1093/brain/awn179. PMid:18697909.
11. Ceballos-Baumann AO, Boecker H, Bartenstein P, et al. A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity Arch Neurol. 1999;56(8):997-1003. http://dx.doi.org/10.1001/ archneur.56.8.997. PMid:10448806.
12. Hill KK, Campbell MC, McNeely ME, et al. Cerebral blood flow responses to dorsal and ventral STN DBS correlate with gait and balance responses in Parkinson Diseasee. Exp Neurol. 2013;241:105-12. http:// dx.doi.org/10.1016/j.expneurol.2012.12.003. PMid:23262122.
13. Thobois S, Fraix V, Savasta M, et al. Chronic subthalamic nucleus stimulation and striatal D2 dopamine receptors in Parkinson Diseasee--A [(11)C]-raclopride PET study. J Neurol. 2003;250(10):1219-23. http:// dx.doi.org/10.1007/s00415-003-0188-z. PMid:14586606.
14. Ceballos-Baumann AO, Boecker H, Fogel W, et al. Thalamic stimulation for essential tremor activates motor and deactivates vestibular cortex. Neurology. 2001;56(10):1347-54. http://dx.doi.org/10.1212/ WNL.56.10.1347. PMid:11376186.
15. Thobois S, Dominey P, Fraix V, et al. Effects of subthalamic nucleus stimulation on actual and imagined movement in Parkinson Diseasee: a PET study. J Neurol. 2002;249(12):1689-98. http://dx.doi.org/10.1007/ s00415-002-0906-y. PMid:12529791.
16. Haslinger B, Boecker H, Büchel C, et al. Differential modulation of subcortical target and cortex during deep brain stimulation. Neuroimage. 2003;18(2):517-24. http://dx.doi.org/10.1016/S1053-8119(02)00043-5. PMid:12595204.
17. Hilker R, Voges J, Ghaemi M, et al. Deep brain stimulation of the subthalamic nucleus does not increase the striatal dopamine concentration in parkinsonian humans. Mov Disord. 2003;18(1):41-8. http://dx.doi.org/10.1002/mds.10297. PMid:12518299.
18. Strafella AP, Sadikot AF, Dagher A. Subthalamic deep brain stimulation does not induce striatal dopamine release in Parkinson disease. Neuroreport. 2003;14(9):1287-9. http://dx.doi.org/10.1097/00001756- 200307010-00020. PMid:12824777.
19. Fukuda M, Barnes A, Simon ES, et al. Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. Neuroimage. 2004;21(2):608-15. http://dx.doi.org/10.1016/j.neuroimage.2003.09.068. PMid:14980563.
20. Grafton ST, Turner RS, Desmurget M, et al. Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology. 2006;66(8):1192-9. http://dx.doi.org/10.1212/01. wnl.0000214237.58321.c3. PMid:16636237.
21. Haegelen C, García-Lorenzo D, Le Jeune F, et al. SPECT and PET analysis of subthalamic stimulation in Parkinson Diseasee: analysis using a manual segmentation. J Neurol. 2010;257(3):375-82. http:// dx.doi.org/10.1007/s00415-009-5327-8. PMid:19774437.
22. Le Jeune F, Vérin M, N’Diaye K, et al. Decrease of prefrontal metabolism after subthalamic stimulation in obsessive-compulsive disorder: a positron emission tomography study. Biol Psychiatry. 2010;68(11):1016-22. http://dx.doi.org/10.1016/j.biopsych.2010.06.033. PMid:20951978.
23. Reich MM, Brumberg J, Pozzi NG, et al. Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy? Brain. 2016;139(11):2948-56. http://dx.doi.org/10.1093/ brain/aww223. PMid:27658421.
24. Haense C, Müller-Vahl KR, Wilke F, et al. Effect of deep brain stimulation on regional cerebral blood flow in patients with medically refractory tourette syndrome. Front Psychiatry. 2016;7:118. http:// dx.doi.org/10.3389/fpsyt.2016.00118. PMid:27458389.
25. Sauleau P, Drapier S, Duprez J, et al. Weight gain following pallidal deep brain stimulation: a PET study. PLoS One. 2016;11(4):e0153438. http://dx.doi.org/10.1371/journal.pone.0153438. PMid:27070317.
26. Hagelweide K, Schönberger AR, Kracht LW, Gründler TOJ, Fink GR, Schubotz RI. Motor cognition in patients treated with subthalamic nucleus deep brain stimulation: limits of compensatory overactivity in Parkinson Diseasee. Neuropsychologia. 2018;117:491-9. http://dx.doi. org/10.1016/j.neuropsychologia.2018.07.007. PMid:30003903.
27. Greuel A, Pauls KAM, Koy A, et al. Pallidal deep brain stimulation reduces sensorimotor cortex activation in focal/segmental dystonia. Mov Disord. 2020;35(4):629-39. http://dx.doi.org/10.1002/mds.27970. PMid:31922299.
28. Sidtis JJ, Sidtis DVL, Dhawan V, Tagliati M, Eidelberg D. Stimulation of the subthalamic nucleus changes cortical-subcortical blood flow patterns during speech: a positron emission tomography study. Front Neurol. 2021;12:684596. http://dx.doi.org/10.3389/fneur.2021.684596. PMid:34122323.
29. Park S, Jeong HS, Chung YA, et al. Changes of regional cerebral blood flow after deep brain stimulation in cervical dystonia. EJNMMI Res. 2022;12(1):47. http://dx.doi.org/10.1186/s13550-022-00919-6. PMid:35943616.
30. Hayashi Y, Mishima T, Fujioka S, et al. Unilateral GPi-DBS Improves ipsilateral and axial motor symptoms in Parkinson’s disease as evidenced by a brain perfusion single photon emission computed tomography study. Front Hum Neurosci. 2022;16:888701. http://dx.doi.org/10.3389/ fnhum.2022.888701. PMid:35634204.
1MS, Medical student, Faculdade de Medicina de Marília, Marília, SP, Brazil.
2PhD, Professor Doutor, Universidade Estadual Paulista, Marília, SP, Brazil.
Received Dec 13, 2023
Accepted Jan 16, 2024