REVIEW
Manufatura aditiva (MA) ou impressão 3D consiste em uma tecnologia capaz de produzir objetos elaborados, sendo um método rápido de desenvolver protótipos ou produtos. Especificamente na Neurocirurgia Oncológica, a MA é útil no treinamento e aprimoramento de técnicas cirúrgicas e na compreensão do tumor e de suas relações com as estruturas adjacentes. Contudo, apesar dos recentes avanços, a aplicabilidade e a utilização da impressão 3D nessa especialidade ainda não são bem consolidadas. Assim, o objetivo deste estudo é revisar e analisar as principais aplicações dessa tecnologia na Neurocirurgia Oncológica. Para isso, foi realizada uma revisão sistemática utilizando os termos apropriados nas bases de dados PubMed e SciELO entre julho e dezembro de 2021. Os artigos foram classificados de acordo com sua aplicabilidade em Educação e Simulação e/ou Planejamento Cirúrgico. Foram constatados resultados positivos nos aspectos citados, com benefícios para os pacientes e equipe cirúrgica. Nesse sentido, a MA demostrou promover uma experiência prévia à cirurgia, auxiliando na predição do risco de ressecção, além de melhorar significativamente o entendimento da afecção e do procedimento. Conclui-se que mais estudos abordando o uso dessa tecnologia devem ser estimulados, especialmente em relação aos desfechos e benefícios ao longo prazo dentro da área.
Additive manufacturing (AM) or 3D printing consists of a technology capable of producing elaborate objects, being a quick method of developing prototypes or products. Specifically, in Oncologic Neurosurgery, AM is useful in training and improving surgical techniques, as in understanding the tumor and its relationships with adjacent structures. However, despite recent advances, the applicability and use of 3D printing in this specialty are still not well established. Thus, this study aims to review and analyze the main applications of this technology in Oncology Neurosurgery. For this, a systematic review was carried out using the appropriate terms in the PubMed and SciELO databases from July to December 2021. The articles were classified according to their applicability in Education and Simulation and/or Surgical Planning. Positive results were found in both aspects, with benefits for patients and the surgical team. In this sense, AM has been shown to promote an experience before surgery, helping to predict the risk of resection, in addition to significantly improving the understanding of the condition and the procedure. It is concluded that more studies addressing the use of this technology should be encouraged, especially concerning long-term outcomes and benefits within the subspecialty.
1. Nishimura PLG, Rodrigues OV, Botura G Jr, Silva LA. Prototipagem rápida: um comparativo entre uma tecnologia aditiva e uma subtrativa. In: Anais do 12° Congresso Brasileiro de Pesquisa e Desenvolvimento em Design; 2016; Belo Horizonte. Belo Horizonte: Blucher Design Proceedings. v. 2, p. 4481-91. http://dx.doi.org/10.5151/despro-ped2016-0386.
2. Leal AG. Manual de neurocirurgia: do diagnóstico ao tratamento. Curitiba: Editora CRV; 2019. 350 p. http://dx.doi. org/10.24824/978854443779.7.
3. Randazzo M, Pisapia J, Singh N, Thawani J. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016;7(34, Suppl 33):S801-9. http://dx.doi.org/10.4103/2152-7806.194059. PMid:27920940.
4. Romero ADCB, de Aguiar PHP. Impressão em três dimensões - aplicações em neurocirurgia. J Bras Neurocir. 2015;26(3):195-202. http://dx.doi.org/10.22290/jbnc.v26i3.1335.
5. Pugliese R, Beltrami B, Regondi S, Lunetta C. Annals of 3D printed medicine polymeric biomaterials for 3D printing in medicine: an overview. Ann 3D Print Med. 2021;2:100011. http://dx.doi.org/10.1016/j. stlm.2021.100011.
6. Leal AG, Ramina R, de Aguiar PHP, Fernandes BL, et al. Clinical applications of additive manufacturing models in neurosurgery: a systematic review. Arq Bras Neurocir Brazilian Neurosurg. 2021 Dec 26;40(4):e349-60. https://doi.org/10.1055/s-0041-1740646.
7. Dho YS, Lee D, Ha T, et al. Clinical application of patient-specific 3D printing brain tumor model production system for neurosurgery. Sci Rep. 2021;11(1):7005. http://dx.doi.org/10.1038/s41598-021-86546-y. PMid:33772092.
8. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160. http://dx.doi.org/10.1136/bmj.n160. PMid:33781993.
9. Grosch AS, Schröder T, Schröder T, Onken J, Picht T. Development and initial evaluation of a novel simulation model for comprehensive brain tumor surgery training. Acta Neurochir (Wien). 2020;162(8):1957- 65. http://dx.doi.org/10.1007/s00701-020-04359-w. PMid:32385637.
10. Baskaran V, Štrkalj G, Štrkalj M, Di Ieva A. Current applications and future perspectives of the use of 3D printing in anatomical training and neurosurgery. Front Neuroanat. 2016;10:69. http://dx.doi.org/10.3389/ fnana.2016.00069. PMid:27445707.
11. Grillo FW, Souza VH, Matsuda RH, et al. Patient-specific neurosurgical phantom: assessment of visual quality, accuracy, and scaling effects. 3D Print Med. 2018;4:3. http://dx.doi.org/10.1186/ s41205-018-0025-8.
12. Thiong’o GM, Bernstein M, Drake JM. 3D printing in neurosurgery education: a review. 3D Print Med. 2021;7(1):9. http://dx.doi.org/10.1186/ s41205-021-00099-4.
13. Huang X, Liu Z, Wang X, et al. A small 3D-printing model of macroadenomas for endoscopic endonasal surgery. Pituitary. 2019;22(1):46-53. http://dx.doi.org/10.1007/s11102-018-0927-x. PMid:30506234.
14. Shen Z, Xie Y, Shang X, et al. The manufacturing procedure of 3D printed models for endoscopic endonasal transsphenoidal pituitary surgery. Technol Health Care. 2020;28(S1):131-50. http://dx.doi. org/10.3233/THC-209014. PMid:32364146.
15. Guo X-Y, He Z-Q, Duan H, et al. The utility of 3-dimensional-printed models for skull base meningioma surgery. Ann Transl Med. 2020;8(6):370-370. http://dx.doi.org/10.21037/atm.2020.02.28. PMid:32355814.
16. Huang X, Fan N, Wang H, Zhou Y, Li X, Jiang X-B. Application of 3D printed model for planning the endoscopic endonasal transsphenoidal surgery. Sci Rep. 2021;11:5333. PMid:33414495.
17. Martín-Noguerol T, Paulano-Godino F, Riascos RF, Calabia-del- Campo J, Márquez-Rivas J, Luna A. Hybrid computed tomography and magnetic resonance imaging 3D printed models for neurosurgery planning. Ann Transl Med. 2019;7(22):684-684. http://dx.doi. org/10.21037/atm.2019.10.109. PMid:31930085.
18. Konakondla S, Brimley CJ, Sublett JM, et al. Multimodality 3D superposition and automated whole brain tractography: comprehensive printing of the functional brain. Cureus. 2017;9(9):e1731. http://dx.doi. org/10.7759/cureus.1731. PMid:29201580.
19. Ding CY, Yi XH, Jiang CZ, et al. Development and validation of a multi-color model using 3-dimensional printing technology for endoscopic endonasal surgical training. Am J Transl Res. 2019;11(2):1040-8. PMid:30899403.
20. Dayan E, Thompson RM, Buch ER, Cohen LG. 3D-printed head models for navigated non-invasive brain stimulation. Clin Neurophysiol. 2016;127(10):3341-2. http://dx.doi.org/10.1016/j.clinph.2016.08.011. PMid:27614003.
21. Thawani JP, Singh N, Pisapia JM, et al. Three-dimensional printed modeling of diffuse low-grade gliomas and associated white matter tract anatomy. Clin Neurosurg. 2017;80(4):635-45. http://dx.doi.org/10.1093/ neuros/nyx009. PMid:28362934.
22. Muelleman TJ, Peterson J, Chowdhury NI, Gorup J, Camarata P, Lin J. Individualized surgical approach planning for petroclival tumors using a 3D printer. J Neurol Surg B Skull Base. 2016;77(3):243-8. http:// dx.doi.org/10.1055/s-0035-1566253. PMid:27175320.
23. van de Belt TH, Nijmeijer H, Grim D, et al. Patient-specific actual-size three-dimensional printed models for patient education in glioma treatment: first experiences. World Neurosurg. 2018;117:e99-105. http:// dx.doi.org/10.1016/j.wneu.2018.05.190. PMid:29870846.
24. Mackle EC, Shapey J, Maneas E, et al. Patient-specific polyvinyl alcohol phantom fabrication with ultrasound and x-ray contrast for brain tumor surgery planning. J Vis Exp. 2020;2020(161):1-18. PMid:32744524.
25. Gargiulo P, Árnadóttir Í, Gíslason M, Edmunds K, Ólafsson I. New directions in 3D medical modeling: 3D-printing anatomy and functions in neurosurgical planning. J Healthc Eng. 2017;2017:1439643. https:// doi.org/10.1155/2017/1439643.
26. Mussi E, Mussa F, Santarelli C, et al. Current practice in preoperative virtual and physical simulation in neurosurgery. Bioengineering (Basel). 2020;7(1):7. http://dx.doi.org/10.3390/bioengineering7010007. PMid:31947718.
27. Waran V, Narayanan V, Karuppiah R, et al. Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul Healthc. 2015;10(1):43-8. http://dx.doi.org/10.1097/ SIH.0000000000000060. PMid:25514588.
28. Garvayo M, Cossu G, Broome M, et al. Pediatric cranial osteoblastoma: technical note of surgical treatment and review of the literature. Neurochirurgie. 2021;67(4):383-90. http://dx.doi. org/10.1016/j.neuchi.2020.05.010. PMid:33049284.
29. Chaudhary A, Chopra S, Sinha V. Role of three-dimensional printing in neurosurgery: an institutional experience. Asian J Neurosurg. 2021;16(3):531-8. http://dx.doi.org/10.4103/ajns.AJNS_475_20. PMid:34660365.
30. Watanabe N, Yamamoto Y, Fujimura S, et al. Utility of multi-material three-dimensional print model in preoperative simulation for glioma surgery. J Clin Neurosci. 2021;93:200-5. http://dx.doi.org/10.1016/j. jocn.2021.09.017. PMid:34656248.
31. Chopra S, Boro AK, Sinha VD. 3D printing-assisted skull base tumor surgeries: an institutional experience. J Neurosci Rural Pract. 2021;12(4):630-4. http://dx.doi.org/10.1055/s-0041-1734001. PMid:34737495.
32. Kinsman M, Aljuboori Z, Ball T, Nauta H, Boakye M. Rapid high-fidelity contour shaping of titanium mesh implants for cranioplasty defects using patient-specific molds created with low-cost 3D printing: a case series. Surg Neurol Int. 2020;11:288. http://dx.doi.org/10.25259/ SNI_482_2020. PMid:33033650.
1 Medical Student, Pontifical Catholic University of Parana, Curitiba (PR), Brazil.
2 Biomedical Sciences graduate, Neurological Institute of Curitiba, Curitiba (PR), Brazil.
3 MS, PhD, Neurosurgeon, Neurological Institute of Curitiba, Curitiba (PR), Brazil.
Received Feb 9, 2023
Corrected Mar 20, 2023
Accepted Mar 28, 2023