REVIEW
Introdução: A realidade virtual (RV) e a realidade aumentada (RA) surgem como tecnologias promissoras que podem oferecer suporte à neurocirurgia em vários aspectos, tal como uso intraoperatório, fins educacionais e aplicações para pacientes. A RV é uma tecnologia que cria um ambiente imersivo e tridimensional simulando a realidade, permitindo que o usuário interaja com objetos virtuais. Objetivo: Realizar uma revisão integrativa da literatura sobre a aplicação da realidade virtual (RV) e realidade aumentada (RA) como suporte para neurocirurgia, abordando os benefícios e resultados em ambientes intraoperatórios, práticas educacionais e uso por parte dos pacientes. Além disso, serão exploradas as limitações e perspectivas futuras dessas tecnologias. Métodos: Trata-se de uma revisão integrativa da literatura de natureza qualitativa e investigativa. A busca foi realizada com base nos seguintes passos metodológicos: identificação do tema e pergunta de pesquisa orientadora; definição de critérios de inclusão e exclusão; pesquisa na literatura e subsequente extração de informações dos artigos analisados; análise e interpretação dos resultados; e apresentação da revisão. Resultados: Os achados foram divididos com base em utilização da tecnologia de RV e RA na neurocirurgia; o uso de RV e RA como suporte prático de treinamento para estudantes e residentes em neurocirurgia; o uso de RA e RV pelos pacientes durante procedimentos cirúrgicos. As tecnologias discutidas estabelecem a base para um futuro promissor na prática neurocirúrgica. A versatilidade de aplicações no campo é um dos aspectos mais positivos dos dispositivos de visualização pesquisados. Conclusão: associações com práticas intraoperatórias foram bem avaliadas por profissionais que as utilizaram, e estatisticamente, Os resultados pós-operatórios mostraram resultados adversos praticamente inexistentes. A aplicação na educação também foi bem recebida pelos estudantes envolvidos nos estudos, proporcionando maior exposição de residentes a procedimentos cirúrgicos raros e complexos sem depender de um paciente real e sem colocar em risco a vida do paciente.
1. Choque-Velasquez J, Colasanti R, Collan J, Kinnunen R, Rezai Jahromi B, Hernesniemi J. Virtual reality glasses and “eye-hands blind technique” for microsurgical training in neurosurgery. World Neurosurg. 2018;112:126-30. http://doi.org/10.1016/j.wneu.2018.01.067. PMid:29360589.
2. Holloway T, Lorsch ZS, Chary MA, et al. Operator experience determines performance in a simulated computer-based brain tumor resection task. Int J CARS. 2015;10(11):1853-62. http://doi.org/10.1007/ s11548-015-1160-y. PMid:25805306.
3. Besharati Tabrizi L, Mahvash M. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. J Neurosurg. 2015;123(1):206-11. http://doi. org/10.3171/2014.9.JNS141001. PMid:25748303.
4. Sun G, Wang F, Chen X, et al. Impact of virtual and augmented reality based on intraoperative magnetic resonance imaging and functional neuronavigation in glioma surgery involving eloquent areas. World Neurosurg. 2016;96:375-82. http://doi.org/10.1016/j.wneu.2016.07.107. PMid:27521727.
5. Liu J, Li X, Leng X, Zhong B, Liu Y, Liu L. Effect of 3D slicer preoperative planning and intraoperative guidance with mobile phone virtual reality technology on brain glioma surgery. Contrast Media Mol Imaging. 2022;2022:9627663. http://doi.org/10.1155/2022/9627663. PMid:35795881.
6. Zawy Alsofy S, Sakellaropoulou I, Stroop R. Evaluation of surgical approaches for tumor resection in the deep infratentorial region and impact of virtual reality technique for the surgical planning and strategy. J Craniofac Surg. 2020;31(7):1865-9. http://doi.org/10.1097/ SCS.0000000000006525. PMid:32433127.
7. Incekara F, Smits M, Dirven C, Vincent A. Clinical feasibility of a wearable mixed-reality device in neurosurgery. World Neurosurg. 2018;118:e422-7. http://doi.org/10.1016/j.wneu.2018.06.208. PMid:30257298.
8. Gosal JS, Tiwari S, Sharma T, et al. Simulation of surgery for supratentorial gliomas in virtual reality using a 3D volume rendering technique: a poor man’s neuronavigation. Neurosurg Focus. 2021;51(2):E23. http://doi.org/10.3171/2021.5.FOCUS21236. PMid:34333461.
9. Zhou Z, Yang Z, Jiang S, Zhuo J, Zhu T, Ma S. Augmented reality surgical navigation system based on the spatial drift compensation
method for glioma resection surgery. Med Phys. 2022;49(6):3963-79. http://doi.org/10.1002/mp.15650. PMid:35383964.
10. Yavas G, Caliskan KE, Cagli MS. Three-dimensional-printed marker-based augmented reality neuronavigation: a new neuronavigation technique. Neurosurg Focus. 2021;51(2):E20. http:// doi.org/10.3171/2021.5.FOCUS21206. PMid:34333464.
11. Satoh M, Nakajima T, Yamaguchi T, Watanabe E, Kawai K. Evaluation of augmented-reality based navigation for brain tumor surgery. J Clin Neurosci. 2021;94:305-14. http://doi.org/10.1016/j.jocn.2021.10.033. PMid:34863455.
12. Chen TN, Yin X, Li XG, et al. Application of 3D virtual reality technology with multi-modality fusion in resection of glioma located in central sulcus region. PubMed. 2018;98(17):1302-5. PMid:29764028.
13. Chen SH, Yang J, Han HB, et al. [Application of diffusion tensor imaging combined with virtual reality three-dimensional reconstruction in the operation of gliomas involved eloquent regions]. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51(3):530-5. PMid:31209427.
14. Zhang JS, Qu L, Wang Q, et al. Implement of multimodal navigation-based virtual reality in the needle biopsy of intracranial eloquent lesions. Zhonghua Wai Ke Za Zhi. 2018;56(3):231-6. PMid:29534420.
15. Ma S, Chen S, Hu Y, et al. Application of virtual reality system for individualized preoperative planning of sphenoidal ridge meningioma. Zhonghua Yi Xue Za Zhi. 2014;94(45):3562-6. PMid:25622834.
16. Shao X, Yuan Q, Qian D, et al. Virtual reality technology for teaching neurosurgery of skull base tumor. BMC Med Educ. 2020;20(1):3. http:// doi.org/10.1186/s12909-019-1911-5. PMid:31900135.
1MS, Universidade Federal do Ceará – UFC, Fortaleza, CE, Brasil.
2MS, Universidade Federal da Paraíba – UFPB, João Pessoa, PB, Brasil.
3MS, Universidade Nove de Julho, São Bernardo do Campo, SP, Brasil.
4MS, Faculdade Atenas, Sete Lagoas, MG, Brasil.
5MS, Universidade Federal de Juiz de Fora – UFJF, Juiz de Fora, MG, Brasil.
6MS, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, PR, Brasil.
7MS, Faculdade Evangélica Mackenzie do Paraná, Curitiba, PR, Brasil.
8MD, MSc, Neurosurgeon, Centro Universitário Unifacisa, Campina Grande, PA, Brasil.
Received Jan 10, 2024
Accepted Jan 14, 2024